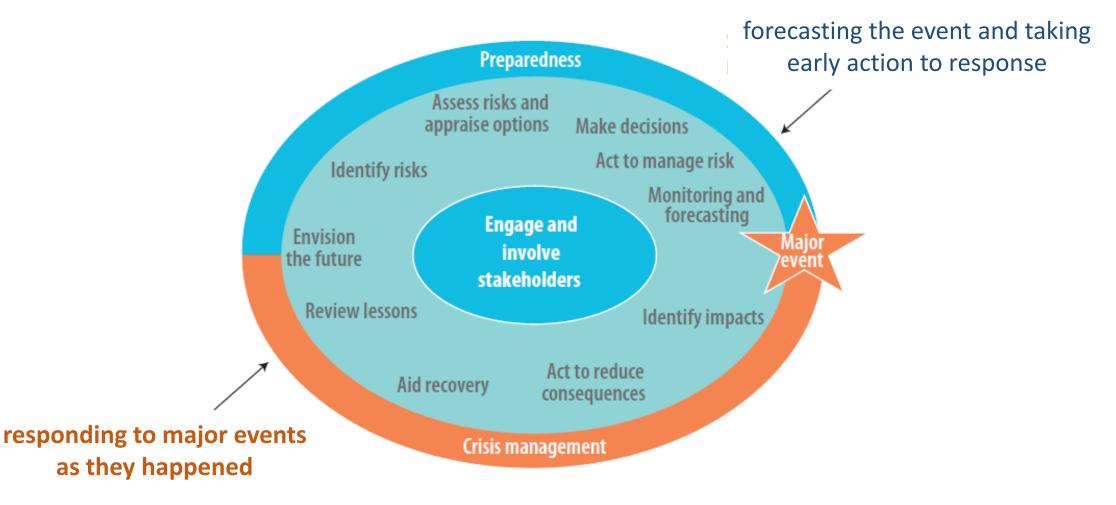
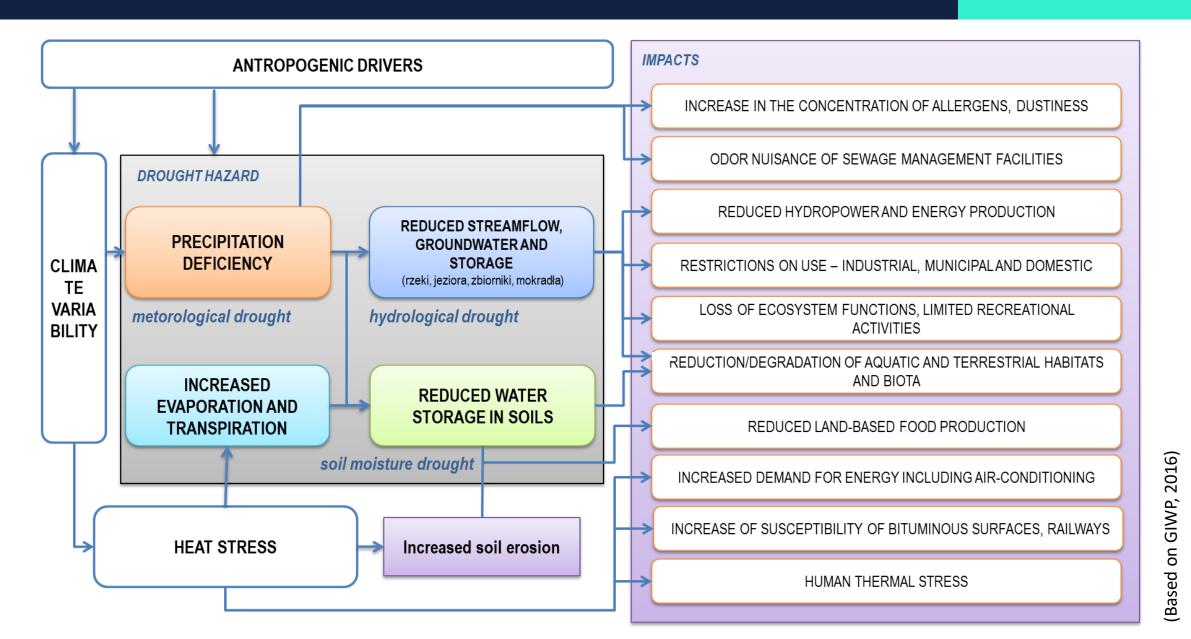


DROUGHT HAZARD ASSESSMENTS AS BASE FOR DROUGHT RISK REDUCTION


<u>Wiwiana SZALIŃSKA</u>, Tamara TOKARCZYK



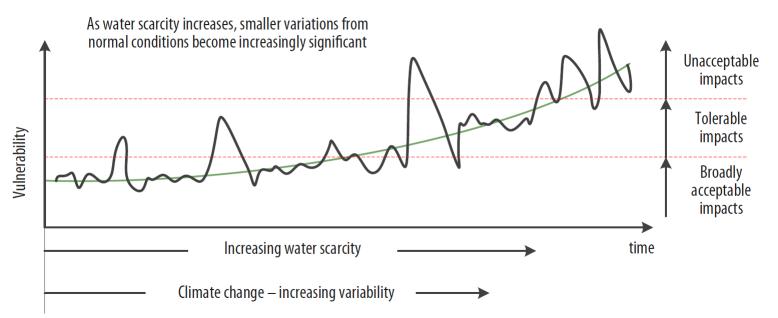





Approach to disaster risk reduction (DRR) has progressively evolved, shifting from 'crisis management' to a 'preparedness' approach









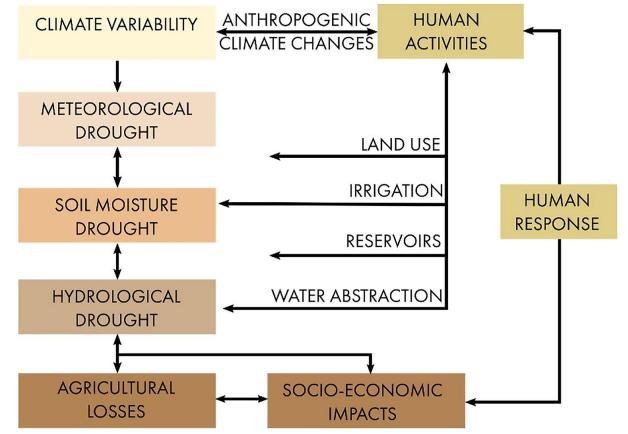



**Drought risk** is defined here as: an emergent property of the human and natural system, reflecting the interaction between climate (meteorological drought), the hydrological response of the basin (blue-water drought and green-water drought) and the vulnerability of the people, ecosystems and economies exposed to it. Drought risk reflects two components: the chance that a drought hazard will occur and the magnitude of the associated impacts.'

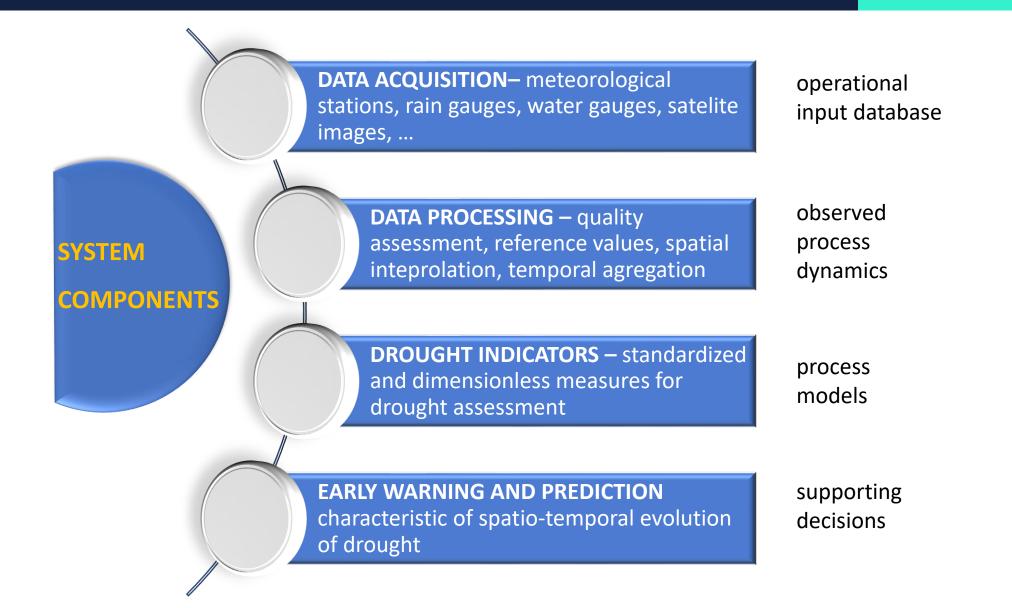
Drought as a risk complex, multidimensional phenomenon, causing negative effects observed in the environment (natural systems), society and economy (social systems).






# PROBABILITY OF HAZARD OCCURING




Meteorological conditions triggering a drought (T, H, W,...) Hydrological response including propagation of water deficyt through a hydrological cycle

**DROUGHT HAZARD** - the possibility of identifying, within a specified time horizon, meteorological conditions triggering a drought and shaping propagation of water deficyt through a hydrological cycle.

Evaluation of drought hazard requires assessment of probability of occurence of drought of given intensity, duration and spatial extend. The probability should be expressed in reference to the time scale of frequency evaluation i.e. once per 1 year, 10 years, 100 years.





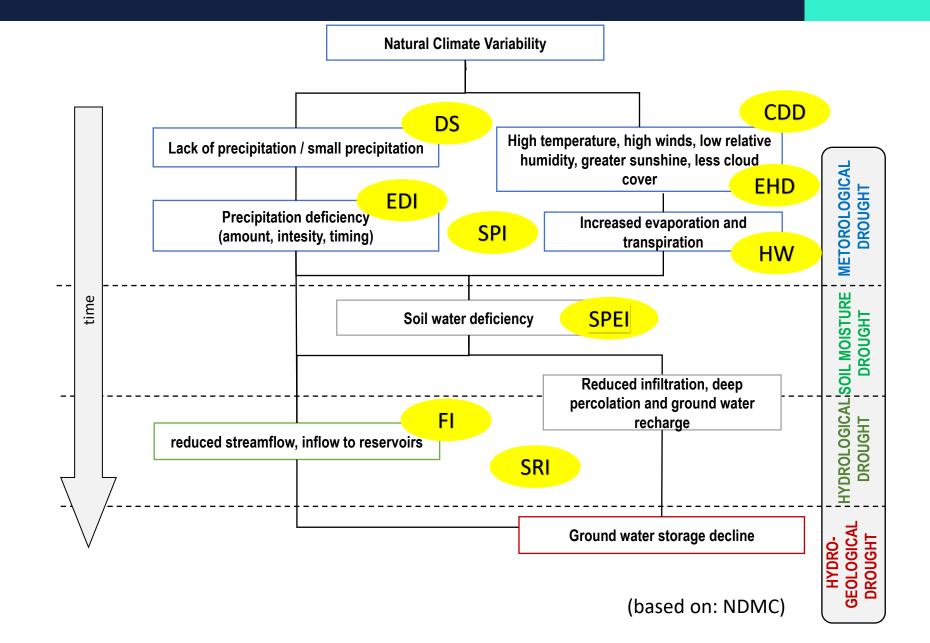


# DATA SOURCES



| DATA CATHEGORY                      | SPECIFICATION                                             | SOURCE                              | RESOLUTION                      |
|-------------------------------------|-----------------------------------------------------------|-------------------------------------|---------------------------------|
| METEOROLOGICAL                      | precipitation, wind speed and direction,                  | meteorological stations             | station location                |
| DATA                                | temparature, solar radiation, humidity                    | meteorological radar                | 1km                             |
| HYDROLOGICAL<br>DATA                | discharge, runoff                                         | water gauge stations                | river cross sections daily      |
| WEATHER                             | precipitation, wind speed and direction,                  | numerical weather prediction        | 2.8, 7 km                       |
| FORECAST                            | temparature, cloud cover, humidity                        | COSMO, GFS                          | 0.25, 0.5 deg                   |
| BIOSPHERIC<br>INFORMATION           | Vegetation indicies                                       | Sentinel-2 MSI<br>NOAA<br>Landsat 8 | 10 m<br>4 km<br>30 m            |
| HYDROSPHERIC                        | Soil moisture                                             | HSAF Metop ASCAT                    | 25 km                           |
| INFORMATION                         | Actual evapotranspiration                                 | Land SAF                            | 5-6 km                          |
| PHYSIOGRAPHIC                       | Digital terrain model                                     | SRTM-C                              |                                 |
| INFORMATION                         | Digital land cover model                                  | CORINE                              |                                 |
| SOCIO-<br>ECONOMICAL<br>INFORMATION | Irrigation, retention objects<br>sowing / crops / harvest | statistical office                  | province<br>agricultural parcel |

# **DROUGHT INDICATORS**




- Relate current hydrometeorological conditions to climatic and hydrological background,
- Detect individual phases of drought development, especially meteorological and hydrological phases,
- Represent normalized and dimensionless assessment of drought intensity,
- Reflect temporal and spatial variability of drought for regions and periods with diverse climatic and hydrological conditions.

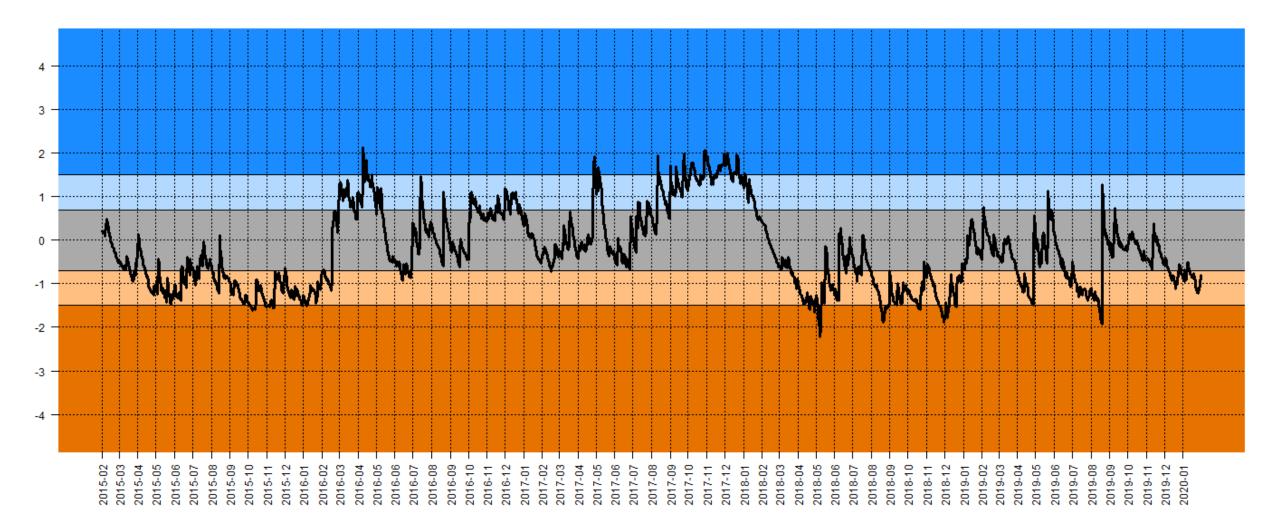


- Monitoring and forecasting the level of drought hazard,
- Identification of threshold levels triggering negative impacts,
- Information that is easy to interpret in decision support process
- Spatial representation the data comes from a location distant from the area where drought impacts occur.
- Temporal resolution the temporal resolution of the indicator does not allow capturing the dynamics of the phenomenon.
- Adequacy the indicator values does not reflect the impacts of the occurrence of the hazard.
- Reference the reference period is too short to assess the probability of the phenomenon occurring.





#### INFORMATION DATA MODEL DATA **ANALYSIS IMPLEMENTATION** PRESENTATION **ACQUSITION** Temporal and spatial Real time data Quality control **Temporal variation** scale adjustment Precipitation - cumulated and missing data - Temporal variability of measurements standardized sum of identification meteorological drought previous precipitation gap fillng intesity in a given weighted by the period of time Historical database function of time Daily precipitation totals for at least 30 years **Reference values Drought indicators** period precipitation climatology daily standardized values of water deficits - Mean Effective relative to the base Precipitation for each **Drought characteristics** period. calendar day beginig and Hazard assesment termination of **Predictions** Data preprocesing meteorological drought dry spells period Daily precipitation **Bulding daily** identification forecasts for next 15-days drought intesitiv precipitation scenarios (mean, maximum) (GFS) (current and for short-term prediction precipitation needed Weather Prediction of moisture conditions to return to normal Model horizon) conditions

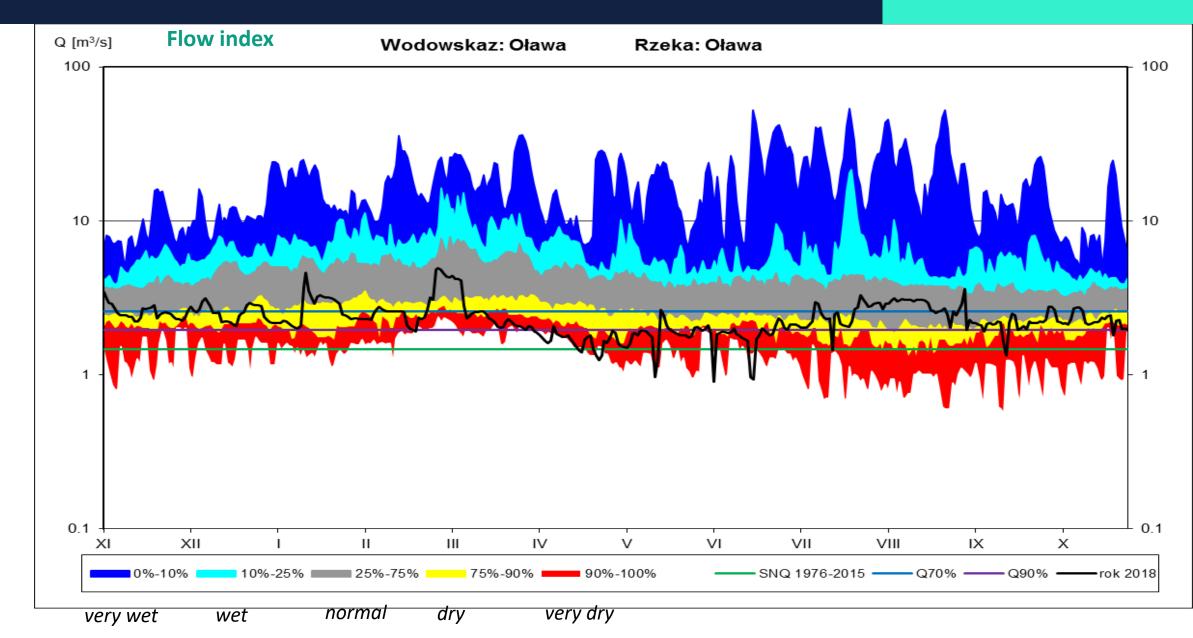

#### Effective Drought Index EDI Byun et al. (1999)

# METEOROLOGICAL DROUGHT HAZARD DURATION



#### Effective Drought Index Byun et al. (1999)

Wskaźnik suszy efektywnej (EDI): ( Jelcz\_Laskowice )

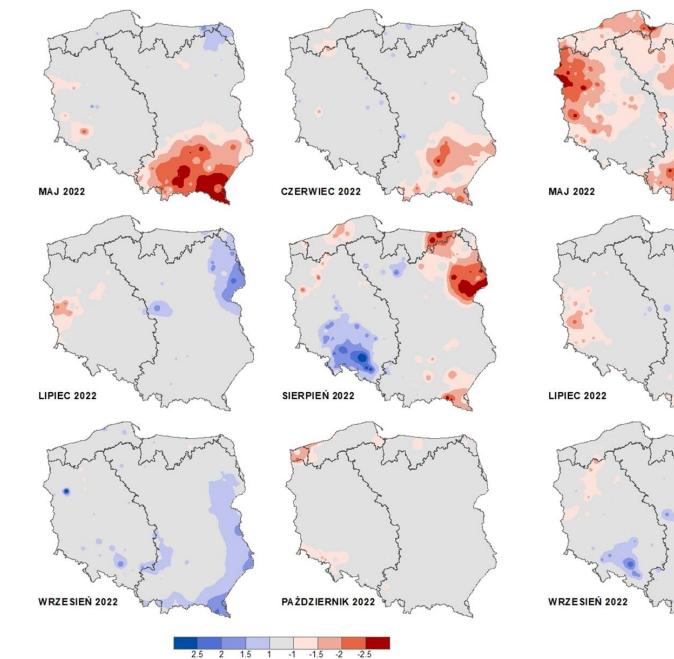


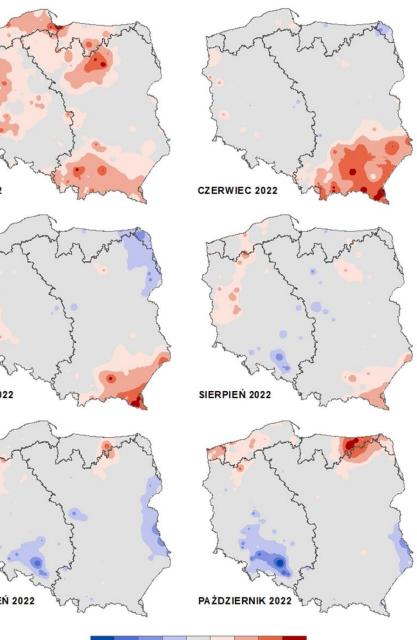

## Flow index FI

|                                                                                   | MODEL                                                                                                                                                                                                                 | INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANALYSIS                                                                          |                                                                                                                                                                                                                       | PRESENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Quality control                                                                   | Temporal and spatial scale adjustment                                                                                                                                                                                 | Temporal variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - missing data<br>identification<br>- gap fillng                                  | - local daily information                                                                                                                                                                                             | <ul> <li>Temporal variability of<br/>hydrological drought<br/>intesity in a given</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                   |                                                                                                                                                                                                                       | period of time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                   |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reference values                                                                  | Drought indicators                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - flow duration curves for<br>each calendar day                                   | - Current flow values in reference to river regime                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                   | specification                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                   |                                                                                                                                                                                                                       | Drought characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                   |                                                                                                                                                                                                                       | - beginig and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data preprocesing                                                                 | Hazard assesment                                                                                                                                                                                                      | termination of meteorological drought                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - Discharge prediction<br>with the use of<br>hydrological and<br>hydraulic models | <ul> <li>Probability of</li> <li>hydrological drought</li> <li>occuernce</li> <li>-</li> <li>Low flow identification</li> </ul>                                                                                       | period<br>- drought intesitiy<br>(mean, maximum)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                   | ANALYSIS Quality control missing data identification gap fillng Reference values flow duration curves for each calendar day Data preprocesing Data preprocesing bischarge prediction with the use of hydrological and | ANALYSISIMPLEMENTATIONQuality controlTemporal and spatial<br>scale adjustment- missing data<br>identification<br>- gap fillng- local daily informationReference values- local daily information- flow duration curves for<br>each calendar day- Current flow values in<br>reference to river regime<br>specificationData preprocesingHazard assesment- Discharge prediction<br>with the use of<br>hydrological and<br>hydraulic models- Probability of<br>hydrological drought<br>occuernce<br>- |

# HYDROLOGICAL DROUGHT HAZARD DURATION







#### INFORMATION MODEL DATA DATA **ANALYSIS IMPLEMENTATION** PRESENTATION **ACQUSITION** Temporal and spatial Real time data Quality control Captured variability scale adjustment Precipitation - SPI can be calculated at missing data Spatial variability of measurements various timescales 1 - 48 identification meteorological drought gap fillng intesity in a given can also be calculated period of time on gridded precipitation Historical database **Reference values** datasets, monthly precipitation Uses historical totals for at least 30 years Hazard assesment precipitation records for period any location to develop a probability of SPI values for 3 months precipitation or less might be useful for basic **Drought characteristics** PDF are calculated and drought monitoring, it is transformed to Spatial drought extend values for 6 months or standardized Gamma · Meteorological drought Predictions less for monitoring distribution with mean intesitiy (mean, agricultural impacts and zero and unit variation maximum) Long-term prediction values for 12 months or of precipitation longer for hydrological Data preprocesing impacts. Climate change Precipitation scenarios Meteorological drought scenrios for given agregation frequency analysis period al varous locations

## Standardized precipitation index (SPI) McKee et al. (1993)

SPI 1

SPI 3

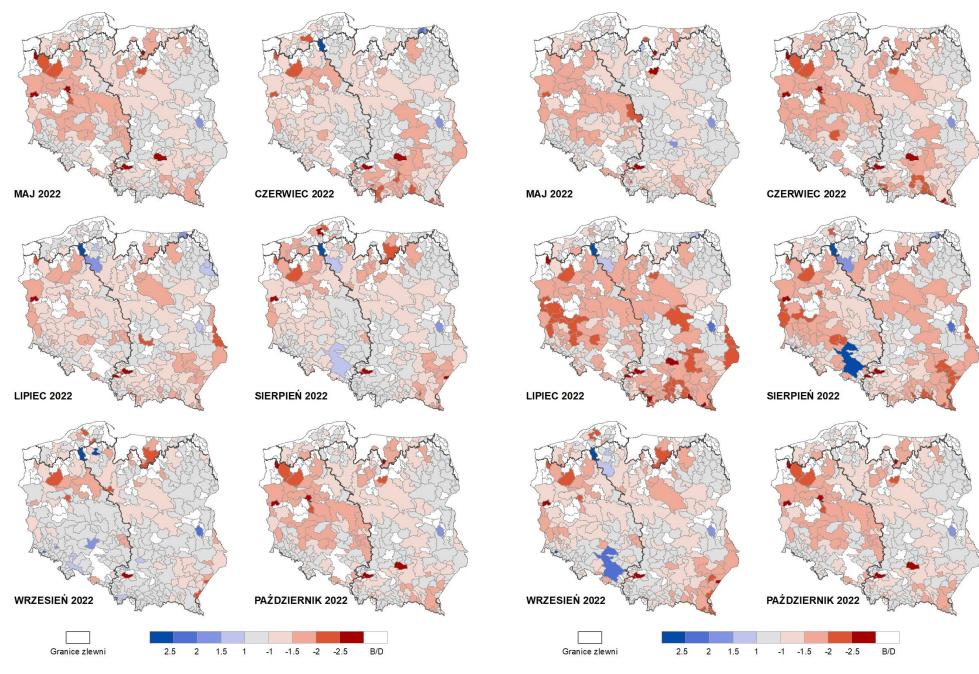




-1 -1.5 -2 -2.5

2.5 2 1.5

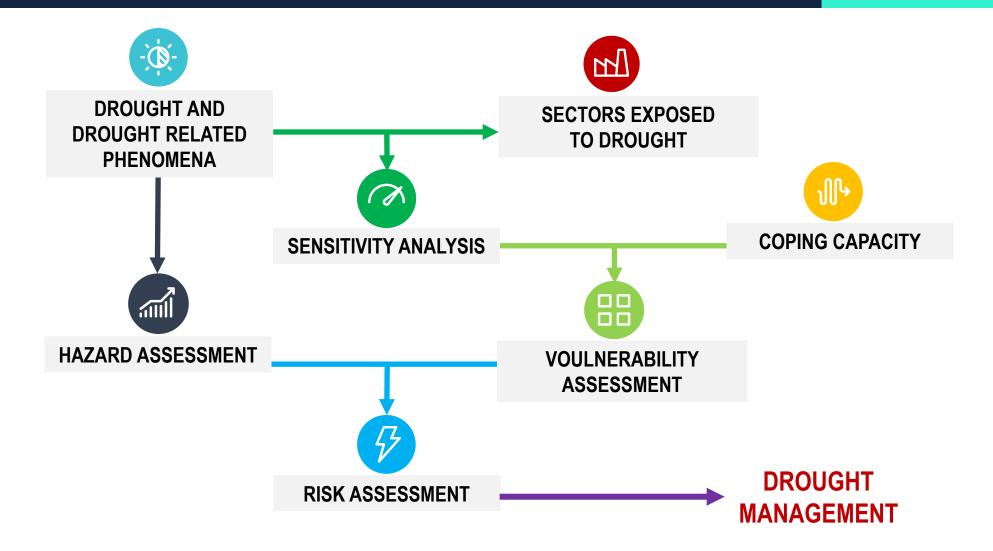
1


DROUGHT EVENT: SPI3 <-1 For at least 2 months

| DATA<br>ACQUSITION              |                                                                                                                                        |                                                                  | <i>INFORMATION</i><br><i>PRESENTATION</i>                                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                 | Quality control                                                                                                                        | Temporal and spatial scale adjustment                            | Captured variability                                                                                                        |
|                                 | <ul> <li>missing data</li> <li>identification</li> <li>gap fillng</li> </ul>                                                           | Using this index 3, 6, 9<br>and 12 months SRI is<br>calculated.  | <ul> <li>Temporal variability of<br/>hydrological drought<br/>intesity in a given</li> </ul>                                |
| Historical database             |                                                                                                                                        |                                                                  | period of time                                                                                                              |
| - daily / monthly flow          |                                                                                                                                        |                                                                  | Monitoring of                                                                                                               |
| values for at least 30<br>years | Reference values                                                                                                                       | Hazard assesment                                                 | hydrological conditions<br>at multiple timescales                                                                           |
|                                 | fitting of suitable<br>distribution to flow                                                                                            |                                                                  |                                                                                                                             |
| Operational databse             | records of a particular                                                                                                                | - Used to monitor and                                            |                                                                                                                             |
| - actual flow records           | location. After this, PDF                                                                                                              | identify drought events<br>with reference to a                   | Drought characteristics                                                                                                     |
|                                 | are calculated and it is<br>transformed to<br>standardized <u>Gaussian</u><br><u>distribution</u> with mean<br>zero and unit variation | particular gauge<br>- Hydrological drought<br>frequency analysis | <ul> <li>Spatial hydrological<br/>drought extend</li> <li>Hydrological drought<br/>intesitiy (mean,<br/>maximum)</li> </ul> |
|                                 |                                                                                                                                        |                                                                  |                                                                                                                             |

# Standarized Runoff Index SRI (Shukla and Wood 2008)

SRI 1


SRI 3



DROUGHT EVENT: SRI3 <-1 For at least 2 months

#### DROUGHT RISK ASSESSMENT: URBAN DROUGHT





#### DROUGHT RISK ASSESSMENT: URBAN DROUGHT





Szalińska, W.; Otop, I.; Tokarczyk, T. Local Urban Risk Assessment of Dry and Hot Hazards for Planning Mitigation Measures. Climate Risk Management 2021, 34, 100371, doi:10.1016/j.crm.2021.100371 CITY INFORMATION: **Area:** 293 km<sup>2</sup> **Population:** 673 000 **Climate zone:** temperate with oceanic and continental influences **Water supply:** surface water secured by two retention and flood prevention reservoirs the Nysa and the Otmuchów reservoirs (storege capacity - 92 days)

#### Antropogenic drought triggers:

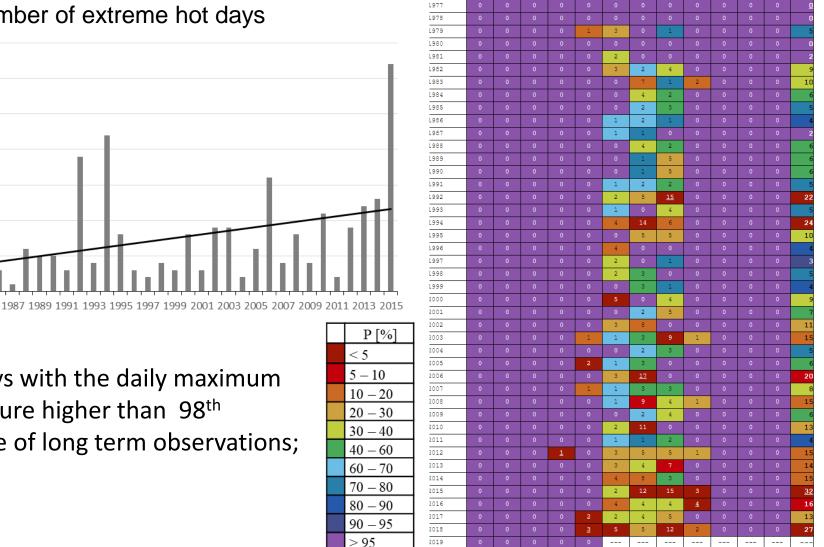
- Increased city population
- Increased demend for energy
- Increased demand for products and services with greater water footprints
- Growth of impervious area
- Poor rainwater management
- Climate change



number of days T >  $30^{\circ}$ 

----

TX


VTT VIII

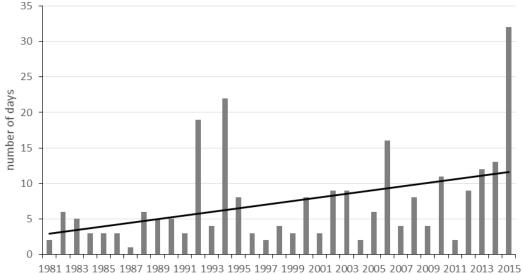
VT

I-XII

XTT

XT

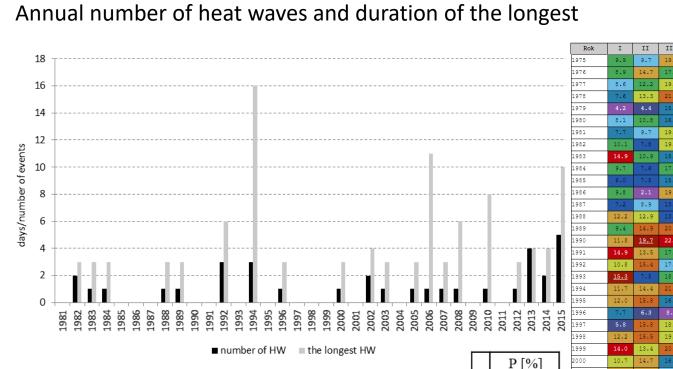



2019

Par.

II

III


Annual number of extreme hot days

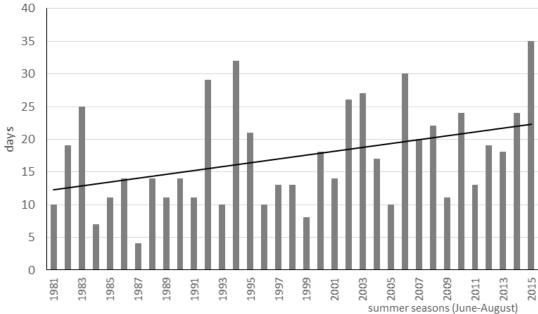


**EHD** - days with the daily maximum temperature higher than 98<sup>th</sup> percentile of long term observations;

# **1ETE**

#### **DROUGHT HAZARD ASSESMENT**

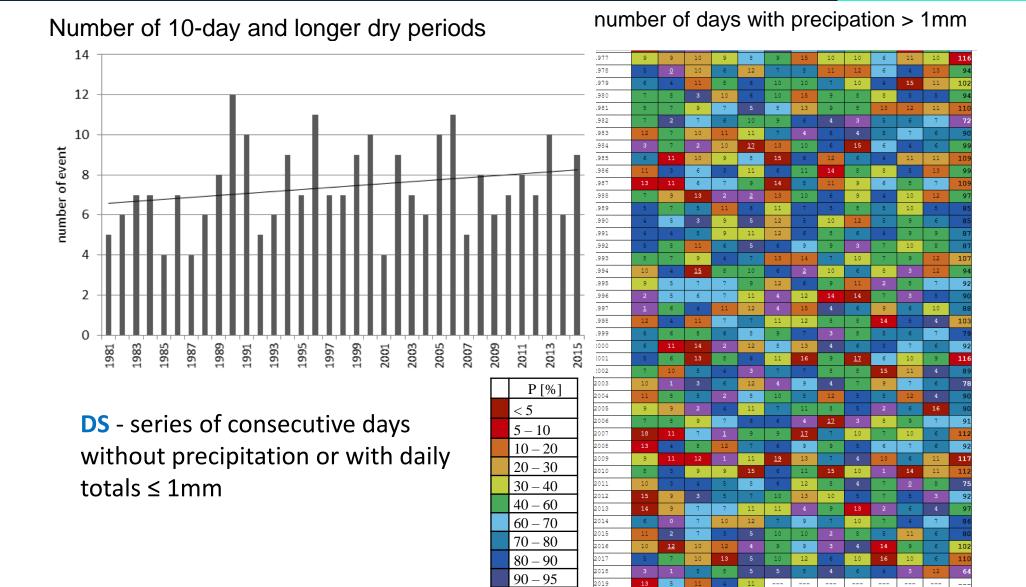



HW - periods of at least three consecutive days with daily maximum air temperature higher than 30°C

#### monthly mean air temperature increased by 0.49°C/10 years

|                                      | Rok  | I           | II          | III  | IV          | ٧           | VI          | VII         | VIII        | IX          | Х    | XI   | XII  | I-XII       |
|--------------------------------------|------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|------|------|------|-------------|
|                                      | 1975 | 9.9         | 9.7         | 19.8 | 22.4        | 27.1        | 29.1        | 28.5        | 29.7        | 31.8        | 23.0 | 11.4 | 8.1  | 31.8        |
|                                      | 1976 | 8.9         | 14.7        | 17.2 | 23.3        | 25.7        | 31.7        | 34.3        | 26.3        | 25.9        | 22.6 | 17.2 | 10.2 | 34.3        |
|                                      | 1977 | 8.6         | 12.2        | 19.4 | 24.5        | 27.3        | 29.7        | 27.9        | 28.0        | 28.0        | 23.4 | 18.6 | 11.5 | 29.7        |
|                                      | 1978 | 7.6         | 13.3        | 21.6 | 20.4        | 26.0        | 27.7        | 29.3        | 28.6        | 23.9        | 22.3 | 13.7 | 11.1 | <u>29.3</u> |
|                                      | 1979 | 4.2         | 4.4         | 15.7 | 19.0        | 30.6        | 32.1        | 26.0        | 30.4        | 28.2        | 23.8 | 13.9 | 14.0 | 32.1        |
|                                      | 1980 | 8.1         | 10.8        | 16.9 | 19.3        | 23.3        | 28.6        | <u>25.2</u> | 29.7        | 26.3        | 22.3 | 16.6 | 10.8 | 29.7        |
|                                      | 1981 | 7.7         | 9.7         | 19.4 | 21.4        | 26.0        | 31.7        | 28.4        | 29.9        | 27.2        | 21.9 | 15.1 | 7.8  | 31.7        |
|                                      | 1982 | 10.1        | 7.8         | 19.3 | 21.2        | 27.3        | 31.3        | 30.8        | 31.0        | 29.6        | 22.5 | 18.9 | 13.1 | 31.3        |
|                                      | 1983 | 14.9        | 10.9        | 15.8 | 24.2        | 29.2        | 29.2        | 35.9        | 33.8        | 30.3        | 25.2 | 18.4 | 12.9 | 35.9        |
|                                      | 1984 | 9.7         | 7.6         | 17.4 | 22.4        | 23.7        | 26.7        | 34.4        | 31.0        | 29.6        | 22.7 | 16.2 | 8.8  | 34.4        |
|                                      | 1985 | 6.0         | 7.5         | 15.7 | 23.6        | 29.0        | 28.4        | 32.1        | 32.4        | 25.1        | 26.0 | 16.0 | 15.3 | 32.4        |
|                                      | 1986 | 9.8         | 2.1         | 19.8 | 26.2        | 27.8        | 30.1        | 31.4        | 31.5        | 24.0        | 21.8 | 13.9 | 13.3 | 31.5        |
|                                      | 1987 | 7.2         | 8.9         | 13.4 | 23.3        | 24.0        | 30.2        | 31.4        | 29.6        | 26.2        | 21.4 | 12.5 | 12.0 | 31.4        |
|                                      | 1988 | 12.2        | 12.9        | 13.9 | 23.8        | 27.4        | 28.5        | 36.2        | 31.4        | 26.0        | 22.4 | 9.5  | 9.9  | 36.2        |
|                                      | 1989 | 9.4         | 14.9        | 20.3 | 22.7        | 25.3        | 28.0        | 31.3        | 34.6        | 28.8        | 24.9 | 14.1 | 14.0 | 34.6        |
|                                      | 1990 | 11.8        | <u>19.7</u> | 22.0 | 21.6        | 26.6        | 29.4        | 33.1        | 34.3        | 23.8        | 24.8 | 13.0 | 9.6  | 34.3        |
|                                      | 1991 | 14.9        | 13.5        | 17.9 | 19.7        | 23.1        | 30.0        | 32.6        | 33.6        | 27.4        | 22.8 | 13.6 | 10.6 | 33.6        |
|                                      | 1992 | 10.8        | 15.4        | 17.0 | 24.6        | 26.8        | 30.7        | 33.3        | 37.3        | 25.2        | 23.7 | 13.6 | 13.6 | 37.3        |
|                                      | 1993 | <u>15.3</u> | 7.5         | 18.1 | 26.1        | 28.8        | 30.4        | 29.5        | 33.1        | 26.2        | 22.3 | 10.8 | 11.7 | 33.1        |
|                                      | 1994 | 11.7        | 14.4        | 21.8 | 24.7        | 25.0        | 33.4        | <u>37.1</u> | 37.4        | 24.4        | 19.2 | 16.3 | 13.4 | 37.4        |
| ╷──┦┙┦┛╷┛╷┛                          | 1995 | 12.0        | 15.8        | 16.9 | 26.1        | 29.7        | 27.3        | 35.0        | 31.6        | 24.7        | 24.9 | 11.2 | 9.7  | 35.0        |
| 11212                                | 1996 | 7.7         | 6.3         | 8.7  | 26.1        | 25.9        | 31.7        | 26.6        | 29.4        | 21.8        | 21.6 | 17.5 | 6.7  | 31.7        |
| 2011<br>2012<br>2013<br>2014<br>2015 | 1997 | 5.8         | 15.8        | 18.9 | 19.2        | 29.5        | 33.0        | 26.1        | 30.0        | 26.4        | 22.4 | 17.9 | 11.6 | 33.0        |
|                                      | 1998 | 12.2        | 15.5        | 19.1 | 24.0        | 29.5        | 34.0        | 35.4        | 29.3        | 25.9        | 21.1 | 11.1 | 11.5 | 35.4        |
|                                      | 1999 | 14.0        | 13.4        | 20.5 | 19.0        | 29.8        | 26.8        | 32.1        | 30.1        | 27.5        | 22.1 | 18.5 | 11.6 | 32.1        |
| P [%]                                | 2000 | 10.7        | 14.7        | 16.4 | 27.1        | 29.4        | 34.5        | 28.5        | 32.7        | 26.2        | 25.2 | 15.1 | 14.3 | 34.5        |
|                                      | 2001 | 11.5        | 13.5        | 17.0 | 26.1        | 26.8        | 28.0        | 31.0        | 31.2        | 21.7        | 26.2 | 17.7 | 6.2  | 31.2        |
| < 5                                  | 2002 | 15.0        | 15.8        | 18.4 | 19.8        | 29.3        | 33.3        | 34.3        | 29.4        | 27.4        | 18.5 | 18.4 | 7.2  | 34.3        |
| 5 10                                 | 2003 | 9.0         | 8.3         | 18.4 | 25.0        | 30.5        | 31.8        | 33.4        | 36.3        | 30.4        | 18.0 | 16.9 | 10.9 | 36.3        |
| 5 - 10                               | 2004 | 6.7         | 16.2        | 20.1 | 22.1        | 23.6        | 27.4        | 30.4        | 32.6        | 27.9        | 26.6 | 17.9 | 10.6 | 32.6        |
| 10 - 20                              | 2005 | 13.2        | 8.2         | 16.9 | 21.2        | <u>32.4</u> | 31.0        | 35.1        | 27.9        | 29.6        | 21.1 | 16.3 | 6.8  | 35.1        |
|                                      | 2006 | 3.1         | 7.3         | 16.9 | 22.9        | 25.2        | 32.2        | 34.9        | 28.9        | 27.9        | 21.1 | 18.3 | 13.4 | 34.9        |
| 20 - 30                              | 2007 | 15.1        | 12.7        | 17.6 | 25.7        | 30.0        | 30.5        | 34.5        | 32.2        | 24.8        | 21.0 | 13.6 | 12.3 | 34.5        |
| 30 - 40                              | 2008 | 13.6        | 18.0        | 17.2 | 20.1        | 27.9        | 31.1        | 32.0        | 32.0        | 31.4        | 21.6 | 18.3 | 11.6 | 32.0        |
|                                      | 2009 | 5.8         | 12.6        | 14.6 | 25.6        | 28.6        | 28.2        | 32.6        | 33.1        | 27.6        | 24.3 | 16.2 | 12.8 | 33.1        |
| 40 - 60                              | 2010 | <u>1.9</u>  | 10.9        | 21.8 | 26.2        | <u>21.7</u> | 31.4        | 34.1        | 29.7        | 24.3        | 17.4 | 19.7 | 5.0  | 34.1        |
| 60 - 70                              | 2011 | 10.2        | 11.2        | 18.7 | 24.1        | 29.0        | 30.0        | 30.8        | 30.9        | 29.6        | 25.6 | 18.1 | 11.3 | 30.9        |
|                                      | 2012 | 12.4        | 10.0        | 21.9 | <u>30.0</u> | 29.9        | 31.5        | 33.8        | 35.9        | 30.0        | 22.8 | 13.0 | 11.2 | 35.9        |
| 70 - 80                              | 2013 | 11.1        | 8.0         | 14.1 | 26.4        | 26.4        | 33.7        | 35.7        | 34.2        | 26.0        | 22.9 | 17.0 | 12.6 | 35.7        |
| 80 - 90                              | 2014 | 13.3        | 14.0        | 22.5 | 22.5        | 29.6        | 33.1        | 33.8        | 31.1        | 27.8        | 23.9 | 18.1 | 13.8 | 33.8        |
| 00 - 90                              | 2015 | 15.3        | 10.6        | 18.8 | 25.5        | 27.3        | 31.9        | 34.5        | <u>37.9</u> | <u>35.3</u> | 23.7 | 17.3 | 16.0 | <u>37.9</u> |
| 90 - 95                              | 2016 | 13.5        | 14.5        | 17.2 | 24.5        | 28.2        | <u>35.1</u> | 34.1        | 31.6        | 30.9        | 22.7 | 15.5 | 13.9 | 35.1        |
| > 05                                 | 2017 | 6.6         | 16.1        | 22.2 | 23.4        | 31.2        | 32.0        | 32.1        | 35.4        | 25.4        | 26.0 | 15.1 | 13.6 | 35.4        |
| > 95                                 | 2018 | 11.9        | 8.5         | 16.6 | 27.2        | 30.6        | 33.0        | 33.2        | 33.9        | 31.1        |      |      |      |             |
|                                      |      |             |             |      |             |             |             |             |             |             |      |      |      |             |




#### Number of cooling days observed in summer seasons (June-August)



**CDD** – accumulated deviation of the air temperature over the days with the air temperature exceeding 27°C

|              | Rok  | I   | II  | III | IV         | v    | VI   | VII          | VIII         | IX          | X          | XI  | XII | I-XII        |
|--------------|------|-----|-----|-----|------------|------|------|--------------|--------------|-------------|------------|-----|-----|--------------|
|              | 1975 | 0.0 | 0.0 | 0.0 | 0.0        | 3.2  | 18.6 | 40.3         | 32.6         | 14.8        | 0.0        | 0.0 | 0.0 | 109.5        |
|              | 1976 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  | 19.4 | 48.0         | <u>0.1</u>   | 0.0         | 0.0        | 0.0 | 0.0 | 67.5         |
|              | 1977 | 0.0 | 0.0 | 0.0 | 0.0        | 6.0  | 31.7 | 7.0          | 11.0         | 6.4         | 0.0        | 0.0 | 0.0 | 62.1         |
|              | 1978 | 0.0 | 0.0 | 0.0 | 0.0        | 1.2  | 8.5  | 15.4         | 11.9         | 0.7         | 0.0        | 0.0 | 0.0 | 37.7         |
|              | 1979 | 0.0 | 0.0 | 0.0 | 0.0        | 24.0 | 50.7 | <u>4.0</u>   | 20.4         | 4.1         | 0.0        | 0.0 | 0.0 | 103.2        |
|              | 1980 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  | 9.7  | 9.4          | 18.8         | 0.5         | 0.0        | 0.0 | 0.0 | 38.4         |
|              | 1981 | 0.0 | 0.0 | 0.0 | 0.0        | 1.0  | 40.2 | 29.4         | 36.3         | 3.8         | 0.0        | 0.0 | 0.0 | 110.7        |
|              | 1982 | 0.0 | 0.0 | 0.0 | 0.0        | 1.9  | 24.4 | 56.5         | 48.9         | 9.3         | 0.0        | 0.0 | 0.0 | 141.0        |
|              | 1983 | 0.0 | 0.0 | 0.0 | 0.0        | 8.3  | 20.4 | 84.4         | 47.8         | 11.1        | 0.0        | 0.0 | 0.0 | 172.0        |
|              | 1984 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  |      | 24.9         | 23.2         | 5.8         | 0.0        | 0.0 | 0.0 | 61.7         |
|              | 1985 | 0.0 | 0.0 | 0.0 | 0.0        | 13.4 | 5.9  | 29.8         | 33.7         | 1.8         | 0.0        | 0.0 | 0.0 | 84.6         |
|              | 1986 | 0.0 | 0.0 | 0.0 | 0.0        | 2.6  | 27.6 | 41.7         | 28.2         | 1.1         | 0.0        | 0.0 | 0.0 | 101.2        |
|              | 1987 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  | 15.6 | 30.9         | 9.4          | 4.7         | 0.0        | 0.0 | 0.0 | 60.6         |
|              | 1988 | 0.0 | 0.0 | 0.0 | 0.0        | 6.0  | 12.6 | 41.8         | 35.7         | 0.7         | 0.0        | 0.0 | 0.0 | 96.8         |
|              | 1989 | 0.0 | 0.0 | 0.0 | 0.0        | 1.0  | 13.4 | 42.3         | 57.9         | 9.3         | 0.0        | 0.0 | 0.0 | 123.9        |
|              | 1990 | 0.0 | 0.0 | 0.0 | 0.0        | 1.4  | 17.7 | 25.0         | 49.9         | 0.0         | 0.0        | 0.0 | 0.0 | 94.0         |
|              | 1991 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  |      | 62.4         | 43.4         | 1.7         | 0.0        | 0.0 | 0.0 | 115.4        |
|              | 1992 | 0.0 | 0.0 | 0.0 | 0.0        | 0.3  | 47.2 | 70.7         | 118.4        | 0.0         | 0.0        | 0.0 | 0.0 | 236.0        |
|              | 1993 | 0.0 | 0.0 | 0.0 | 0.0        | 8.6  | 15.5 | 23.9         | 31.9         | 4.1         | 0.0        | 0.0 | 0.0 | 84.0         |
|              | 1994 | 0.0 | 0.0 | 0.0 | 0.0        | 0.6  | 33.8 | 138.3        | 59.5         | 1.1         | 0.0        | 0.0 | 0.0 | 233.3        |
|              | 1995 | 0.0 | 0.0 | 0.0 | 0.5        | 9.2  | 8.2  | 95.5         | 51.6         | 0.8         | 0.0        | 0.0 | 0.0 | 165.8        |
|              | 1996 | 0.0 | 0.0 | 0.0 | 0.3        | 2.5  | 33.8 | 15.1         | 23.5         | 0.0         | 0.0        | 0.0 | 0.0 | 75.2         |
| 5 3          | 1997 | 0.0 | 0.0 | 0.0 | 0.0        | 14.0 | 33.5 |              | 56.4         | 8.0         | 0.7        | 0.0 | 0.0 | 127.6        |
| 2013<br>2015 | 1998 | 0.0 | 0.0 | 0.0 | 0.0        | 15.3 | 32.6 | 41.7         | 37.5         | 6.0         | 0.0        | 0.0 | 0.0 | 133.1        |
| August)      | 1999 | 0.0 | 0.0 | 0.0 | 0.0        | 6.3  | 11.3 | 68.2         | 33.4         | 12.5        | 0.0        | 0.0 | 0.0 | 131.7        |
| (aBase)      | 2000 | 0.0 | 0.0 | 0.0 | 5.3        | 12.3 | 56.7 |              | 50.6         | 1.7         | 0.0        | 0.0 | 0.0 | 134.5        |
| P [%]        | 2001 | 0.0 | 0.0 | 0.0 | 0.0        | 4.8  | 7.1  | 48.2         | 58.6         | 0.0         | <u>4.1</u> | 0.0 | 0.0 | 122.8        |
|              | 2002 | 0.0 | 0.0 | 0.0 | 0.0        | 9.1  | 44.9 | 72.8         | 84.2         | 5.9         | 0.0        | 0.0 | 0.0 | 216.9        |
| < 5          | 2003 | 0.0 | 0.0 | 0.0 | 0.0        | 9.8  | 58.8 | 58.7         | 81.5         | 6.1         |            | 0.0 | 0.0 | 214.9        |
| <b>5</b> 10  | 2004 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  | 11.9 | 42.5         | 62.1         | 1.2         | 0.7        | 0.0 | 0.0 | 118.4        |
| 5 – 10       | 2005 | 0.0 | 0.0 | 0.0 | 0.0        | 20.5 | 26.8 | 67.1         | 24.8         | 13.6        |            | 0.0 | 0.0 | 152.8        |
| 10 - 20      | 2006 | 0.0 | 0.0 | 0.0 | 0.0        | 0.0  | 61.0 | <u>161.0</u> | 20.3         | 6.3         | 0.0        | 0.0 | 0.0 | 248.6        |
|              | 2007 | 0.0 | 0.0 | 0.0 | 0.0        | 26.9 | 56.3 | 64.9         | 49.7         | 0.0         |            | 0.0 | 0.0 | 197.8        |
| 20 - 30      | 2008 | 0.0 | 0.0 | 0.0 | 0.0        | 5.9  | 45.8 | 65.5         | 47.8         | 12.2        | 0.0        | 0.0 | 0.0 | 177.2        |
| 30 - 40      | 2009 | 0.0 | 0.0 | 0.0 | 0.0        | 3.9  | 8.4  | 58.7         | 51.1         | 3.2         | 0.0        | 0.0 | 0.0 | 125.3        |
|              | 2010 | 0.0 | 0.0 | 0.0 | 0.1        | 0.0  | 35.5 | 105.4        | 51.9         | 0.0         | 0.0        | 0.0 | 0.0 | 192.9        |
| 40 - 60      | 2011 | 0.0 | 0.0 | 0.0 | 0.0        | 10.8 | 43.8 | 35.7         | 56.0         | 9.9         | 1.3        | 0.0 | 0.0 | 157.5        |
| 60 - 70      | 2012 | 0.0 | 0.0 | 0.0 | <u>8.2</u> | 25.3 | 33.7 | 76.9         | 65.3         | 4.9         | 0.0        | 0.0 | 0.0 | 214.3        |
|              | 2013 | 0.0 | 0.0 | 0.0 | 1.0        | 6.4  | 40.8 | 86.6         | 59.6         | 0.0         | 0.0        | 0.0 | 0.0 | 194.4        |
| 70 – 80      | 2014 | 0.0 | 0.0 | 0.0 | 0.0        | 14.4 | 34.6 | 127.1        | 41.8         | 9.0         | 0.0        | 0.0 | 0.0 | 226.9        |
| 80 - 90      | 2015 | 0.0 | 0.0 | 0.0 | 0.0        | 1.6  | 25.6 | 103.5        | <u>163.0</u> | 18.8        | 0.0        | 0.0 | 0.0 | <u>312.5</u> |
|              | 2016 | 0.0 | 0.0 | 0.0 | 0.0        | 16.3 | 51.6 | 80.6         | 45.5         | <u>43.3</u> | 0.0        | 0.0 | 0.0 | 237.3        |
| 00 05 1      | 2017 | 0.0 | 0.0 | 0.0 | 0.0        | 15.1 | 50.4 | 67.0         | 79.3         | 0.7         |            | 0.0 | 0.0 | 212.5        |
| 90 – 95      |      |     |     |     |            |      |      |              |              |             |            |     |     |              |





>95

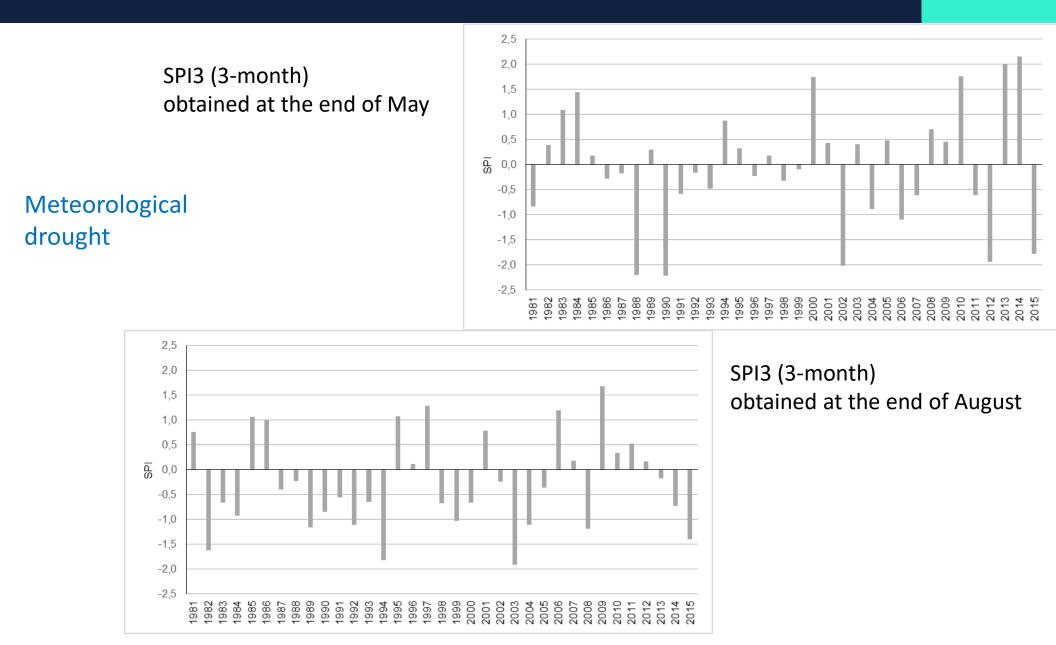
Par.

II

III

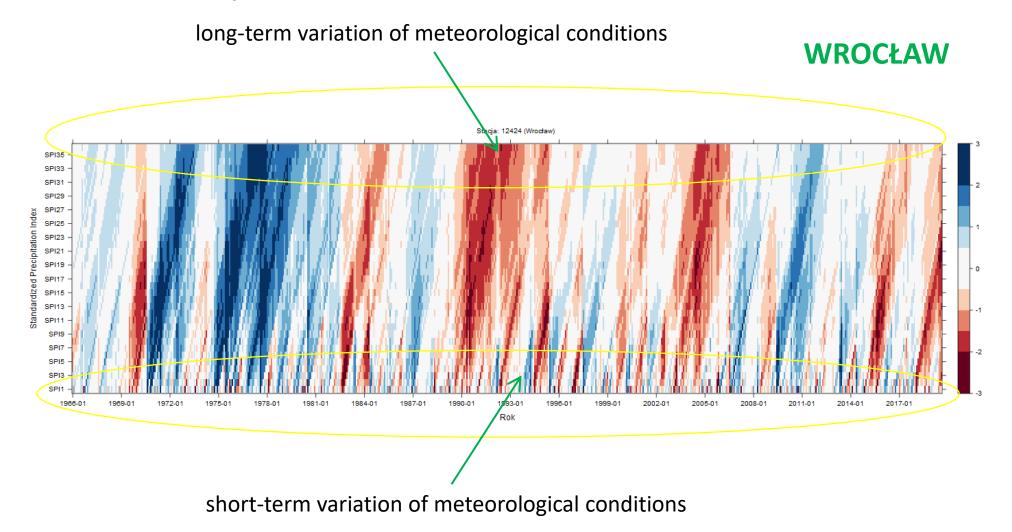
IV V

I


VI

VII VIII

IX X


XI XII I-XII





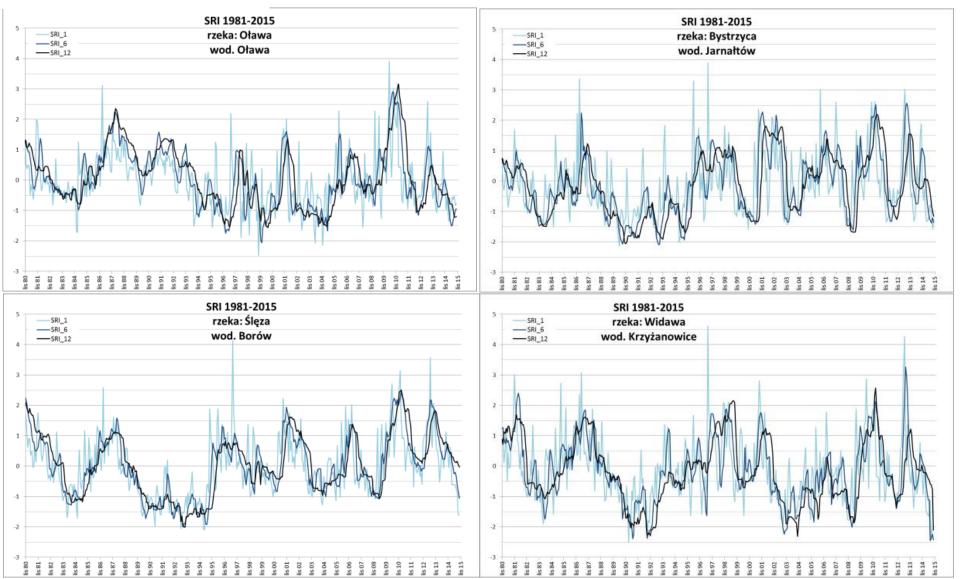


#### **Standardised Precipitation Index SPI**



The Hovmoller-type diagram



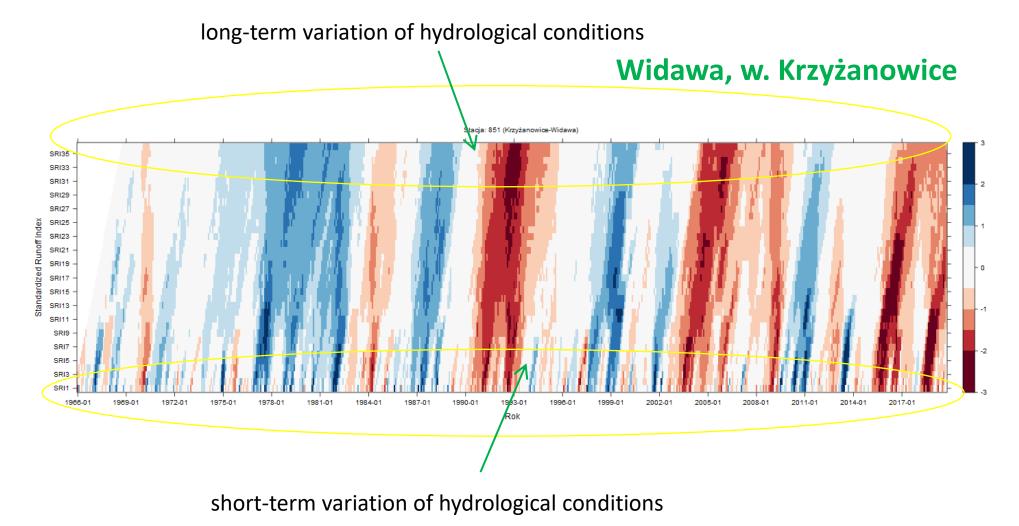

**Low Flows** 

|              |           | Low flow periods characteristics                                           |                                                                            |                                                                             |                                                                             |  |  |  |  |
|--------------|-----------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Water gauge  | River     | D <sub>i</sub> <d<sub>50% &amp;<br/>T<sub>i</sub><t<sub>30</t<sub></d<sub> | D <sub>i</sub> <d<sub>80% &amp;<br/>T<sub>i</sub><t<sub>90</t<sub></d<sub> | D <sub>i</sub> <d<sub>90% &amp;<br/>T<sub>i</sub><t<sub>120</t<sub></d<sub> | D <sub>i</sub> <d<sub>95% &amp;<br/>T<sub>i</sub><t<sub>180</t<sub></d<sub> |  |  |  |  |
| Jarnołtów    | Bystrzyca | 95                                                                         | 18                                                                         | 8                                                                           | 5                                                                           |  |  |  |  |
| Krzyżanowice | Widawa    | 57                                                                         | 17                                                                         | 9                                                                           | 6                                                                           |  |  |  |  |
| Oława        | Oława     | 101                                                                        | 25                                                                         | 8                                                                           | 4                                                                           |  |  |  |  |
| Borów        | Ślęza     | 33                                                                         | 21                                                                         | 4                                                                           | 6                                                                           |  |  |  |  |
| Malczyce     | Odra      | 76                                                                         | 25                                                                         | 3                                                                           | 7                                                                           |  |  |  |  |
| Oława (Most) | Odra      | 69                                                                         | 22                                                                         | 5                                                                           | 4                                                                           |  |  |  |  |

Di – deficit volume; Ti - duration



# Hydrological drought




#### SRI1, SRI6, SRI12 for selected water gauge stations

#### TRENDS IN DROUGHT HAZARD



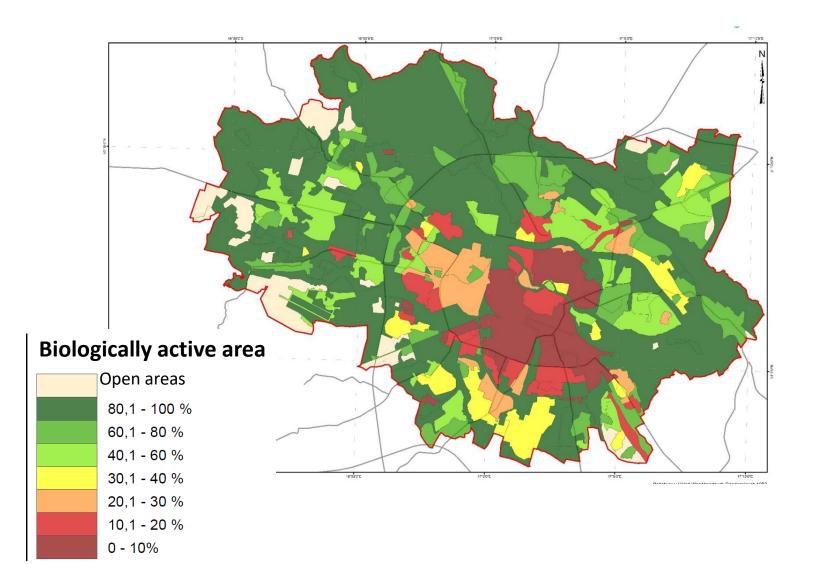
#### **Standardised Runoff Index SRI**



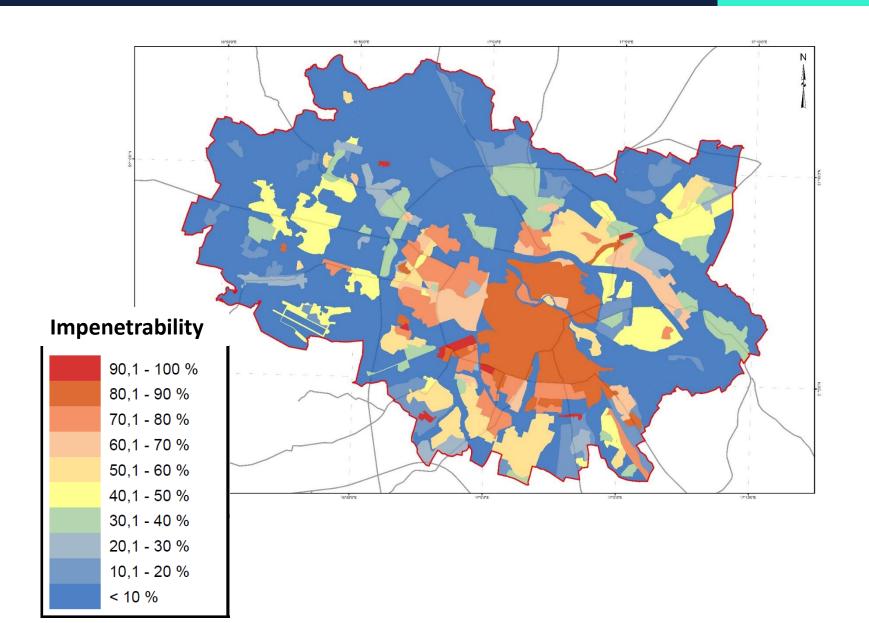
The Hovmoller-type diagram



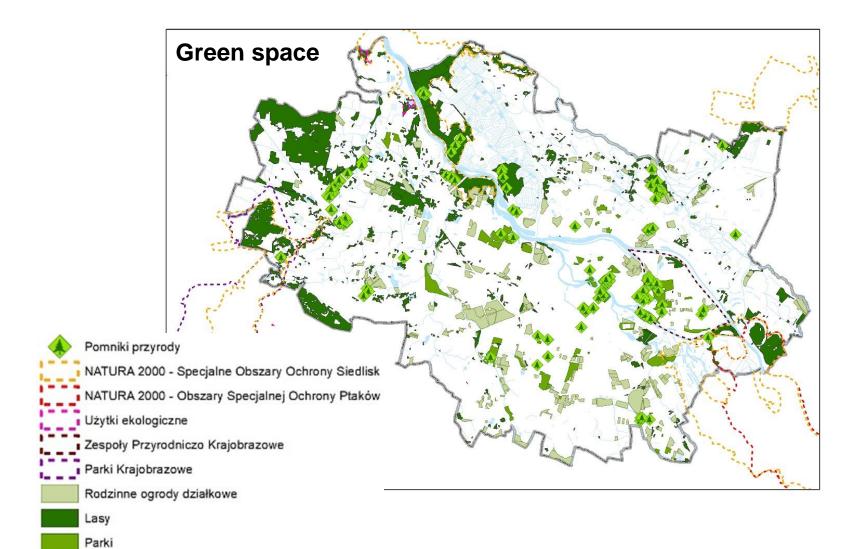
| Hazard | observed frequency       | observed<br>trend          | climate change projections up to 2050                                     | Hazard level |
|--------|--------------------------|----------------------------|---------------------------------------------------------------------------|--------------|
| EHD    | several times a year     | rising                     | intensity may become critical over the <b>next few</b><br><b>years</b>    | 5            |
| CDD    | over a dozen days a year | rising                     | intensity may become critical over the <b>next few</b><br><b>years</b>    | 5            |
| HW     | several times a year     | rising                     | intensity or frequency may become critical over the <b>next few years</b> | 5            |
| DS     | several times a year     | rising                     | intensity may become critical over the <b>next ten</b><br><b>years</b>    | 5            |
| LF     | every 3-5 years          | rising                     | intensity or frequency may become critical over the <b>next ten years</b> | 4            |
| MD     | every 2-3 years          | no<br>significant<br>trend | intensity or frequency may become critical over the <b>next decades</b>   | 4            |
| HD     | every 3-5 years          | rising                     | intensity or frequency may become critical over the <b>next ten years</b> | 4            |




| sector     | Sensitivity factors                            | Unit                   | Relevance                                                                                                                         |
|------------|------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ion        | population density                             | [no./km <sup>2</sup> ] | The higher the population density, the higher the density of the built environment and the higher the potential of thermic stress |
| ılat       | children under 6 years old                     | [no./km <sup>2</sup> ] | The higher the proportion of potentially state-dependent, or family-dependent                                                     |
| population | people over 65 years old                       | [no./km <sup>2</sup> ] | people, the lower the response capacity                                                                                           |
| economy    | main economy sectors                           | list of<br>sectors     | The larger the number of water-intensive industries the higher the sensitivity                                                    |
| ů o        | budget structure                               | [%]                    |                                                                                                                                   |
| e<br>O     | gross domestic product                         | per capita             | The richer the society, the higher the response capacity                                                                          |
|            | green space and protected                      | [%]                    | The higher the share of green space the lower the potential of thermic stress.                                                    |
| cover      | areas                                          |                        | Large share of green spaces and protected areas increases sensitivity to drought due to the need for watering;                    |
| land       | impermeable area                               | [%]                    | Lower the share of impermeable areas the higher infiltration and retention capacity                                               |
|            | biologically active area                       | [%]                    | and lower impacts                                                                                                                 |
| >          | energy supply structure<br>(fossil, renewable) | %                      | The higher the cooling water demand, the higher the sensitivity of the urban power supply                                         |
| energy     | electrical energy consumption per sector       | TWh                    |                                                                                                                                   |

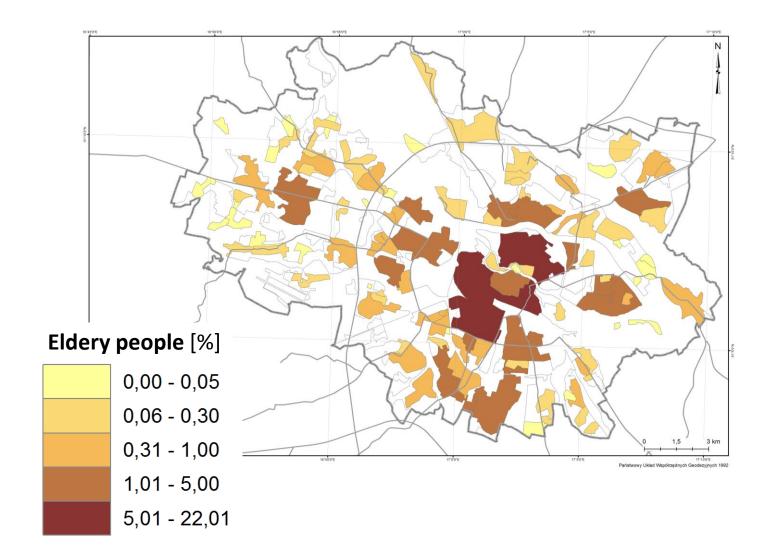



| sector             | Sensitivity factors                                                                                           | Unit                                                        | Relevance                                                                                                                                                                                                                                                              |
|--------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | water channel density                                                                                         | km/km <sup>2</sup>                                          | The change in density is an indicator of the periodic loss of the water network (rivers, small natural and artificial watercourses) and an increase in susceptibility to the effects of drought                                                                        |
| management         | municipal water supply                                                                                        | %                                                           | The higher the share of the surface water for municipal water supply or the city's reliance on only one source of water supply the higher sensitivity to drought and low flows events.<br>The efficiency of a water supply system decreases its sensitivity to drought |
| water man:         | water consumption structure<br>(total, industry, agriculture<br>and forestry, domestic water<br>consumption,) | m <sup>3</sup> /year<br>water<br>consumptio<br>n per capita | The higher the water use per sector/per capita, the higher sensitivity to drought and low flows events                                                                                                                                                                 |
| tion               | rail tracks                                                                                                   | [km]                                                        | The increase in track length increases the risk of problems in rail transport due to high temperatures                                                                                                                                                                 |
| transportation     | road density (total length of main roads per square meter)                                                    | [km/km <sup>2</sup> ]                                       | High density road areas reduce infiltration and retention. High temperatures cause deformation of bituminous surfaces.                                                                                                                                                 |
| trans              | public transport vehicles without air conditioning                                                            | [%]                                                         | Reduced thermal comfort of passengers during hot weather                                                                                                                                                                                                               |
| hea<br>Ithc<br>are | hospital emergency wards<br>hospital beds                                                                     | per capita<br>per capita                                    | The more emergency wards/ hospital beds, the higher city's response capacity                                                                                                                                                                                           |

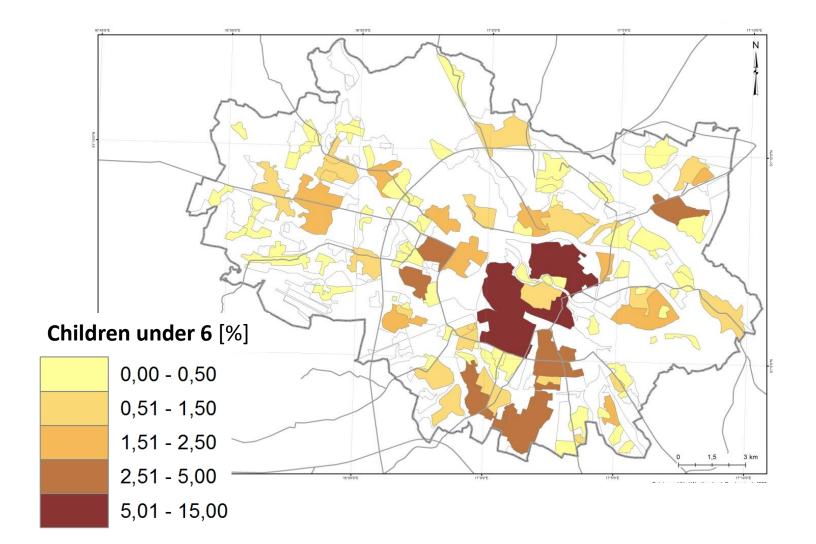






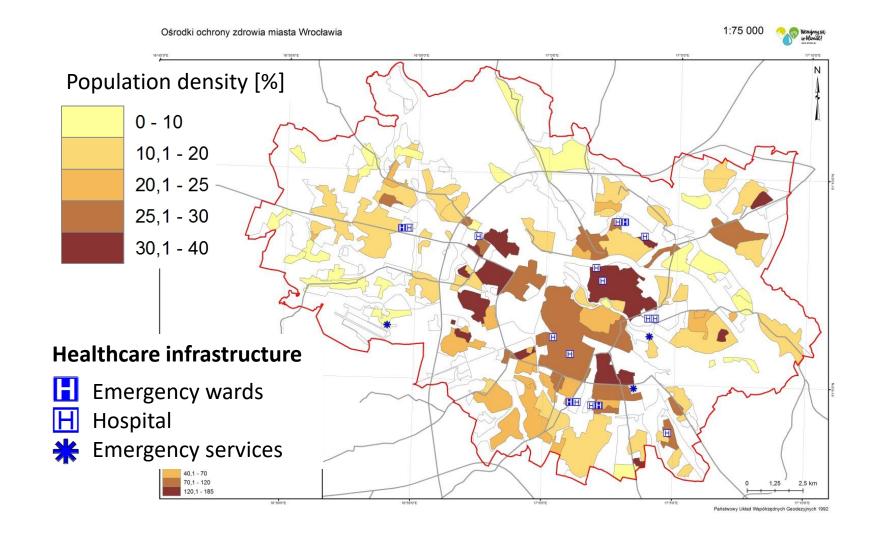





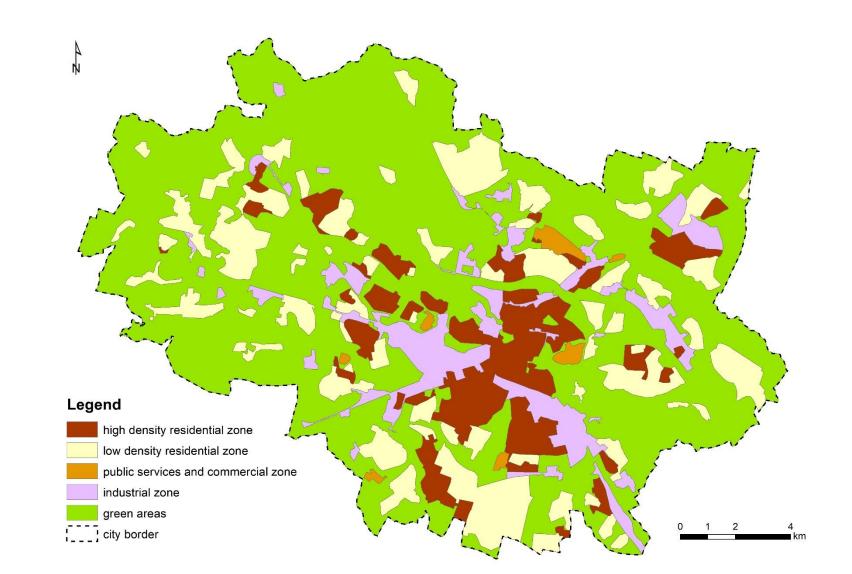

#### DROUGHT RISK ASSESSMENT: SENSIVITY ANALYSIS





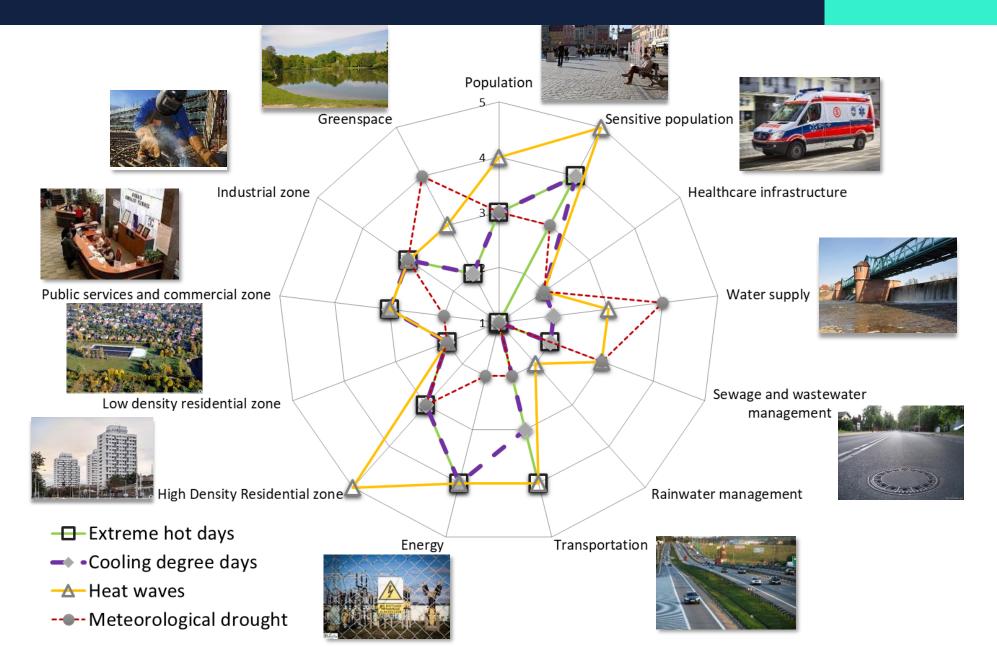






#### DROUGHT RISK ASSESSMENT: SENSIVITY ANALYSIS

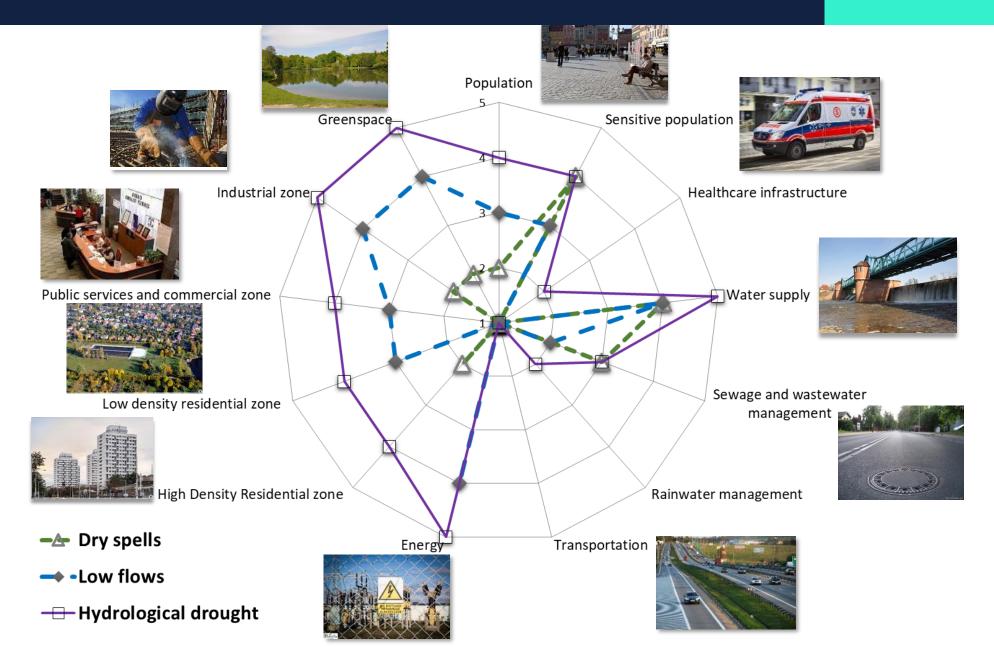





## DROUGHT RISK ASSESSMENT: VOULERABILITY AREAS






#### **DROUGHT VOULERABILITY ASSESSMENT**





#### **DROUGHT VOULERABILITY ASSESSMENT**







#### analyzying long-term patterns + future scenarios

|                  |                         |                |                 | <b>↑</b>    |                |  |
|------------------|-------------------------|----------------|-----------------|-------------|----------------|--|
| Potential        |                         | Probability of | of hazard event | occurrence  |                |  |
| consequences     | low<br>(1)              |                |                 |             |                |  |
| catastrophic (5) | medium risk medium risk |                | high risk       | high risk   | very high risk |  |
| critical (4)     | low risk mediun         |                | medium risk     | high risk   | very high risk |  |
| serious (3)      | low risk                | low risk       | medium risk     | high risk   | high risk      |  |
| marginal (2)     | low risk                | low risk       | medium risk     | medium risk | high risk      |  |

reported consequences of historical drought events literature studies potential lossess



- size of losses,
- disruptions in functioning, activities, services,
- time and expenses needed to return to the conditions from before the event

#### **DROUGHT RISK ASSESSMENT**



|                                       |     |     | RISK |      | L  |    |    |
|---------------------------------------|-----|-----|------|------|----|----|----|
| City component voulnerable to drought | EHD | CDD | ΗV   | LLDS | LF | MD | HD |
| Population                            | Н   | Н   | V    | Н    | Н  | Μ  | Μ  |
| Sensitive population                  | V   | V   | V    | Н    | Н  | Μ  | Μ  |
| Healthcare infrastructure             | Μ   | Н   | Н    | Μ    | Μ  | L  | Μ  |
| Water supply                          | M   | Η   | Н    | V    | Н  | Μ  | Η  |
| Sewage and wastewater management      | Н   | Н   | Н    | Н    | Н  | Μ  | Μ  |
| Rainwater management                  | Μ   | Μ   | Н    | Μ    | Μ  | L  | Μ  |
| Transportation                        | V   | н   | V    | Μ    | Μ  | L  | L  |
| Energy                                | V   | V   | V    | Μ    | Μ  | Μ  | Η  |
| High Density Residential zone         | Н   | Н   | V    | Н    | Н  | L  | Μ  |
| Low density residential zone          | Н   | н   | Н    | Μ    | Μ  | Μ  | Μ  |
| Public services and commercial zone   | Н   | Н   | Н    | Μ    | Μ  | Μ  | Μ  |
| Industrial zone                       | Н   | Н   | Н    | Н    | Н  | Μ  | Н  |
| Greenspace                            | Н   | Н   | Н    | Н    | Н  | Μ  | Н  |

Risk matrix is to help to identify and prioritize a set of measures aimed to reduce identified drought risks.



Included in the "Plan for adapting the City of Wrocław to climate change by 2030"

Development of the system of information on drought and related hazards

Improvment of outdoor human thermal comfort  $\zeta$ 

Adaptation of the urban transportation system to climate change  $\zeta'$ 

Development of the green-blue infrastructure system

Development of rainwater management system

Upgrading water supply safety  $\zeta \stackrel{<}{\prec}$ 

Managing energy system reliability and peak demand

Sustainable spatial city development

Dziękuję / Thank you

Autor (imię i nazwisko/Centrum/Wydział/Zespół/Inne)

DD/MM/RRRR, miejsce

