Permits fix the level of pollution control while charges fix the marginal costs of pollution control |
Policy makers determine how much total pollution can occur (through the issuance of permits), but they cannot set bounds on expenditures for pollution control.
This strategy could be particularly appropriate for environmental problems with tight margins of error or with marginal costs of control that do not rise dramatically with increasing regulatory stringency. |
Charge systems control the maximum amount that a firm may pay for each increment of emissions, but do not dictate with certainty how much control will actually occur.
Such a tactic may be more suitable where the margin of error on damages is not tight, but the potential industrial impacts of "over-control" are especially great. This could occur, for example, where small increases in control costs lead to very large swings in production and employment.
|
In the presence of technological change and without additional government intervention, permits freeze the level of pollution control while charges increase it. |
Technological improvement will lower pollution-control costs and permit prices, rather than emissions levels, unless the government intervenes. |
Technological change will both lower total pollution-control costs and increase levels of control. Although firms will choose to control more emissions and pay less taxes, this can be offset by the expanded production that results from lower operating costs. |
With permits, resource transfers are private-to-private while they are private-to-public with pollution charges. |
Firms choosing to emit pollution beyond their initial permitted level must make payments to other firms who agree to control more than their initial share. For those who believe that the private sector can utilize these resources more effectively, permits offer an advantage over charges. |
Payments for uncontrolled emissions flow to government. Alternately, the government can earmark the revenue from charges for environmental investments, deficit reduction, or reductions in distortionary taxes. |
While both charges and permits impose costs on industry and consumers, charge systems make the costs more explicit to both groups. |
Both charges and permits force firms to internalize the costs of their pollution, either through expenditures on pollution controls or through cash payments (buying permits or paying charges). |
Charge systems make these costs very visible both to industry and the public. While this may be problematic for short-term political reasons, it may ultimately be advantageous in that it can educate the public about the costs and trade-offs associated with various levels of environmental control. |
Permits adjust automatically for inflation, while charges do not. |
Because a permit system's "currency" is emission rights, price movements in the overall economy will not affect levels of emissions control. |
Inflation would reduce the taxes in real terms. Firms would therefore control less. An obvious way to resolve this problem would be to link the charge rate to some price index. |
High transaction costs (e.g., costs associated with identifying willing buyers and sellers of permits or costs of tax collection) can drive up the total costs of compliance, having a negative effect under either system. |
Transaction costs can decrease the amount of trading that will occur in a marketable-permit system |
Transaction costs can decrease the amount of pollution control that will be achieved with a charge system. |
Permit systems may be more susceptible to "strategic" behavior |
If any one firm controls a significant share of the total number of permits, its activities may influence permit prices. Although no magic cut-off point exists, it is unlikely that firms could engage in price-setting behavior if they controlled less than 10% of the market. If other firms present credible threats of entry to the market, it is less likely that anticompetitive behavior can thrive. |
|